教員業績データベース
閉じる
ヤマダ タカユキ
山田 隆行
所属
京都女子大学 データサイエンス学部 データサイエンス学科
職種
教授
著書・論文歴
著書
統計データ科学事典,pp.70-73, pp.152-153, pp.164-165, pp.188-189 (共著) 2013/06
論文
High-dimensional asymptotic expansion of the null distribution for L2 norm based MANOVA testing statistic under general distribution Journal of Statistical Planning and Inference 224,9-26頁 (共著) 2023
論文
High-dimensional asymptotic expansion of the null distribution for Schott’s test statistic for complete independence of normal random variables Communications in Statistics-Theory and Methods (単著) 2022
論文
High-dimensional asymptotic results for EPMCs of W- and Z- rules Communications in Statistics-Theory and Methods 51,2385-2413頁 (共著) 2020
論文
Constrained linear discriminant rule for 2-groups via the Studentized classification statistic W for large dimension SUT Journal of Mathematics 55,69-93頁 (単著) 2019
論文
Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality Computational Statistics 34,911-941頁 (共著) 2019
論文
Interval estimation in two-group discriminant analysis under heteroscedasticity for large dimension Communication in Statistics-Theory and Methods 47,5717-5728頁 (単著) 2018
論文
Asymptotic cut-off point in linear discriminant rule to adjust the misclassification probability for large dimensions Hiroshima Math Journal 47,319-348頁 (共著) 2017
論文
Interval estimation in discriminant anslysis for large dimension Communication in Statistics-Theory and Methods 46,9042-9052頁 (共著) 2017
論文
Testing homogeneity of mean vectors under heteroscedasticity in high-dimension Journal of multivariate analysis 139,7-27頁 (共著) 2015
論文
Estimations for some functions of covariance matrix in high dimension under non-normality and its applications Journal of multivariate analysis 130,27-34頁 (共著) 2014
論文
The asymptotic approximation of EPMC for linear discriminant rules using a Moore-Penrose inverse matrix in high dimension Communications in Statistics—Theory and Methods 42,3329-3338頁 (共著) 2013
論文
A model selection criterion for discriminant analysis of high-dimensional data with fewer observations Journal of Statistical Planning and Inference 142 (12),3134-3145頁 (共著) 2012
論文
A modified linear discriminant analysis for high-dimensional data Hiroshima Math Journal 42,209-231頁 (共著) 2012
論文
A test for multivariate analysis of variance in high-dimension Communications in Statistics-Theory and Methods 41,2602-2615頁 (共著) 2012
論文
Asymptotic power comparison of three tests in GMANOVA when the number of observed points is large Statistics and Probability Letters 82,692-698頁 (共著) 2012
論文
High-dimensional Edgeworth expansion of LR statistic for testing circular symmetric covariance structure and its error bound Communications in Statistics-Theory and Methods 41,1887-1910頁 (単著) 2012
論文
Note on asymptotic null distributions of LR statistics for testing covariance matrix under growth curve model when the number of the observation points is large SUT Journal of Mathematics 48,37-46頁 (単著) 2012
論文
Asymptotic properties of the EPMC for modified linear discriminant analysis when sample size and dimension are both large Journal of Statistical Planning and Inference 140,2739-2748頁 (共著) 2010
論文
High-dimensional asymptotic expansion of LR statistic for testing intraclass correlation structure and its error bound Journal of Multivariate Analysis 101,101-112頁 (共著) 2010
論文
Asymptotic distribution of the studentized cumulative contribution ratio in high-dimensional principal components analysis Communications in Statistics—Simulation and Computation 38,905-917頁 (共著) 2009
論文
A new confidence interval for all characteristic roots of a covariance matrix Computational Statistics 22,121-131頁 (共著) 2007
論文
Asymptotic distribution of the LR statistic for equality of the smallest eigenvalues in high-dimensional principal component analysis Journal of Multivariate Analysis 98,2002-2008頁 (共著) 2007
論文
On comparisons of exact powers of bivariate GMANOVA tests Communications in Statistics—Theory and Methods 36 (2),399-413頁 (単著) 2007
閉じる